The Fetal Medicine Foundation

Preterm Preeclampsia Screening: Combining Phenotypic Biomarker Models into Robust Prediction Models

Grégoire THOMAS, PhD; Argyro SYNGELAKI, PhD; Karam HAMED, MD; Anais PEREZ-MONTANO, MD; Ana P PANIGASSI, MD; Robin TUYTTEN, PhD; Kypros H NICOLAIDES, MD

OBJECTIVES

To investigate if preterm preeclampsia prediction can be improved with metabolite biomarkers in three screening resource scenarios:

- 1. availability of Placental Growth Factor (PIGF),
- 2. availability of PIGF + Mean Arterial Pressure (MAP)

3. availability of PIGF, MAP + Uterine Artery Pulsatility index (UTA-PI),

using a patient classification in combination with a purpose-developed machine learning predictor modelling methodology.

BACKGROUND

- > Preeclampsia (PE) screening is a key component of antenatal care.
- \succ Current benchmark for PE screening⁽¹⁾ (Figure 1)
- \succ is performed at 11⁺⁰ -13⁺⁶ weeks' gestation
- > detects 75% of women developing PE with a delivery <37 weeks (preterm PE)
- \succ allows for timely initiation of aspirin prophylaxis, i.e., ≤ 16 weeks⁽¹⁾.
- > Universal implementation is hampered by insufficient availability of and access to prenatal care experts.
- \succ To improve PE screening further additional biomarkers are required.

> Recent findings:

- \succ early pregnancy metabolite levels associate with preterm PE;
- > metabolite associations with preterm PE prediction can vary according to maternal body mass index $(BMI)^{(2)}$.
- > Hypothesis: Use of patient classification enables a more effective combination of biomarkers and thus improved preterm PE risk prediction (Figure 2).

Rolnik DL et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017;377(7):613–22. (2) Tuytten R et al. First Trimester Preterm Preeclampsia Prediction with Metabolite Biomarkers: Differential Prediction According to Maternal Body Mass Index. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2022.12.012. (3) Than NG et al. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol. 2018;9

Charac

Gestatio Materna Ethnicity White Black Sout East Mixe Height (o Weight (Body ma <18.

18.5

25 to ³30

Gestatio Birth wei Birth wei

Data are ^a: Chi-squ

	Mode
\triangleright	3 Pred
\succ	26 Me
\triangleright	Detec

Metabolite biomarkers can be combined with the established biomarkers PIGF, MAP and UTA-PI to improve the detection of preterm PE risk in a clinically useful way. Pivotal to achieving improved prediction was the classification of pregnant women according to the maternal characteristics of BMI and/or race. This suggests that maternal phenotyping can have a role in improving the prediction of obstetric syndromes like PE.

FMF World Congress - 25-29 June 2023

STUDY POPULATION				
teristic	preterm PE (n= 106)	Controls (n= 1635)		
nal age at sampling (wk)	12.6 (12.22, 12.98)	12.7 (12.3, 13.0)		
age (y)	30.5 (27.5, 35.4)	32.1 (28.4, 35.5)		
e	48 (45.3)	1025 (62.7)		
k	51 (48.1)	433 (26.5)		
h Asian	4 (3.8)	66 (4.0)		
Asian	1 (0.9)	52 (3.2)		
d	2 (1.9)	59 (3.6)		
cm)	164 (160, 167)	165 (160, 169)		
kg) ^a	75.2 (65.8, 87.0)	65.4 (59.0, 75.7)		
iss index class (kg/m²) ^a	1 (0.9)	33 (2.0)		
5	32 (30.2)	911 (55.7)		
to <25	33 (31.1)	419 (25.6)		
<30	40 (37.7)	272 (16.6)		
nal age at delivery (wk) ^a	34.2 (31.6, 35.7)	39.2 (38.7, 39.5)		
ght (g) ^a	1771 (1354, 2093)	3295 (3100, 3515)		
ght percentile (%) ^a	0.48 (0.03, 10.14)	47.13 (29.19, 66.87)		
epresented as median (interquartile range) or number (percentage). are or Mann Whitney U test as appropriate (p <.01).				

RESULTS

elling methodology validation: Splitting the patient set into a training (2/3) and a test (1/3) set showed developed models were not overfitted. diction models were developed using the complete data set in accordance with the three resource scenarios investigated. etabolites were used across the 3 prediction models; 21 contributed to at least 2 out of 3 prediction models developed. Detection rates were markedly higher with the prediction models than with the respective reference models (Figure 4), whereby > The largest improvements were observed in scenario 2, with a 15% increase over the detection rate estimated for the reference PIGF + MAP. \succ Prediction was improved in Black (14%) and White (19%),

> Prediction was improved in the normal weight (18.5 \leq BMI < 25) and the obese groups (BMI ≥ 30), but not in In the overweight group (25 \leq BMI < 30),

CONCLUSIONS

STUDY DESIGN

METHODS

- were normalized using multiples of medians
- nent: (1) in all patients, (2) BMI and/or race patient strata bodology to generate prediction model:
- version of predictors,
- ial modelling of single predictive models
- single sparse models, and
- of the selected models into final prediction model.
- on performance evaluation: detection rate at 10% FPR

